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Chapter 7

Adapting to Technological Change 
with Artificial Intelligence while 

Mitigating Cyber Threats

Although technological change has always had significant effects on economic 

activity, artificial intelligence (AI) and high-speed automation are among its 

most important recent manifestations. The expansion of computing power and 

availability of big data have fueled remarkable advances in computer science, 

enabling technology to perform tasks that traditionally required humans and 

significant amounts of time. However, along with these advances’ prospects for 

encouraging continued productivity growth, they also threaten to significantly 

disrupt the labor market, particularly among people whose work involves 

routine and manual tasks. Astute policymaking will play an integral role in 

leveraging technology as an asset for the country, while mitigating potential 

disruptions.

The first section of this chapter briefly defines AI and corresponding advances 

in computer science. AI’s most distinctive feature is that it can be used to man-

age a wide range of highly complex tasks with little required supervision, rela-

tive to conventional technology. This general applicability broadens the types 

of tasks where AI could plausibly be a substitute for human labor, underscoring 

both the economic promise of AI and its potential risks.

The second section places AI within the broader historical context of techno-

logical change and highlights the CEA’s predictions for its short-, medium-, 

and long-run effects on productivity and wages. Although we may experience 

a span of years where AI substitutes for human-based labor for many tasks, AI, 
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like much technological change, will ultimately benefit labor through greater 

productivity and real wage growth.

The third section explores AI’s heterogeneous effects and automation across 

industries and the skill distribution. Using autonomous vehicles as a case study, 

we show that one of the key factors for understanding the impact of technologi-

cal change on employment is the price elasticity of demand. AI is expected to 

have a positive net effect on industrial employment, though there could be 

subsector-specific price declines based on changing consumer demand.

The fourth section pivots to the possible risks of technological advances. 

Building on findings in the 2018 Economic Report of the President on the cost 

of cybersecurity breaches, we analyze how measurement problems related to 

these breaches make it difficult to estimate their costs. We present new data 

from 2018 on the pervasiveness of cybersecurity vulnerabilities and the paucity 

of firms’ responses to them across Fortune 500 companies. 

The fifth and final section highlights the role of policy and the considerable 

strides that have been taken by the Trump Administration during the past two 

years. The Administration will continue to embrace technological change, while 

maximizing its promise and minimizing its risk.

Recent years have seen enormous advances in computer science, lead-
ing to skyrocketing hardware and software capabilities. The refine-
ment of computers continues to advance at a rapid rate. The com-

putational power that took up enormous refrigerated rooms a few decades 
ago has been miniaturized to a fraction of its former size. Moreover, computer 
scientists and engineers have made remarkable discoveries in artificial intel-
ligence (AI) and automation. These advances have complemented years of 
rapid growth in computer processing power, along with the explosive growth 
in the availability of digitized data. According to two prominent scholars, “the 
key building blocks are already in place for digital technologies to be as impor-
tant and transformational to society and the economy as the steam engine” 
(Brynjolfsson and McAfee 2014, 9). 

In last year’s Report, we highlighted one aspect of the rapid diffusion 
of computer technology: the increasing exposure of the economy to mali-
cious cyber activity—for example, cybercrime. We found that cybercrime had 
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expanded so much that in 2016 alone that it caused up to $109 billion in harm 
to the economy. Yet computers have, of course, created many more benefits 
than costs, and their rapid evolution promises to fundamentally transform 
the economy in the decade ahead. In 2016, President Obama’s Council of 
Economic Advisers published a sweeping report outlining the likely economic 
impact and policy challenges of accelerating technological change. One metric 
of how rapidly the sector is advancing is that already, in 2018 and 2019, enough 
change has occurred so an update of the previous reports is essential for meet-
ing the challenges of the next decade and beyond. We look ahead in wonder at 
the possibilities of advanced thinking machines, but also worry that automa-
tion will proceed at such a rapid pace that many workers in today’s economy 
will suddenly find themselves superfluous or disconnected from competitive 
job opportunities. We also consider the additional cybersecurity risks posed by 
the increased reliance on information technology.

In this chapter, we dig deeper than we did a year ago into the promise 
and risks of the ongoing computer science revolution. We begin by reviewing 
the latest developments in AI and automation, discussing their likely economic 
effects. The central theme of the first section of this chapter is that a narrow, 
static focus on possible job losses paints a misleading picture of AI’s likely 
effects on the Nation’s economic well-being. With technological advances, 
specific types of legacy positions are usually eliminated, though new jobs and 
evolving work roles are created—increasing real wages, national income, and 
prosperity over time. Automation can complement labor, adding to its value; 
and even when it substitutes for labor in certain areas, it can lead to higher 
employment in other types of work and raise overall economic welfare. This 
will likely be what happens as AI transforms more and more aspects of the 
economy, though new challenges will arise about cybersecurity. In the years 
to come, AI appears poised to automate tasks that had long been assumed to 
be out of reach. Thus, we also analyze the important role of reskilling, appren-
ticeship initiatives, and future hiring processes to help mitigate the poten-
tially disruptive employment effects of technological change and automation 
throughout the skill distribution.

One key question for economists today is whether—in addition to 
improving traditional productive processes—AI will alter processes whereby 
creative new ideas are generated and implemented. In other words, is AI simply 
the next phase in automation, or is it a real break from the past with unique 
implications? We explore both possibilities, but conclude that AI is likely to 
have major effects on the value of different skill sets and the rate at which they 
appreciate and depreciate. In particular, in the long run, aggregate wages will 
be higher because of these new advances.

We then turn to an update of our previous research on the economic 
vulnerabilities associated with the diffusion of technology and mobile comput-
ing capabilities into virtually every corner of our lives. Technology is leading to 
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new and constantly evolving complex security challenges because individuals, 
firms, and governments are already reliant on interconnected and interde-
pendent technology. Whereas past conflicts unfolded on land, sea, and air, 
future conflicts and criminal activity will increasingly take place in cyberspace. 
Drawing on new data, we document that cyber vulnerabilities are quite preva-
lent—even in Fortune 500 companies with significant resources at their dis-
posal. Although these new data do not allow us to update our 2018 estimate of 
the economic costs of malicious cyber activity, the latest data suggest that our 
previous estimate might have been too low, given the underreporting of cyber-
crime. We conclude by discussing the initiatives that are being implemented by 
the Trump Administration and the policy challenges that lawmakers will likely 
face in the years ahead.

What Is Artificial Intelligence?
Although there is no universal definition of artificial intelligence (AI),1 the 
Future of Artificial Intelligence Act of 2017 (H.R. 4625), for example, defines AI as 
“any artificial system that performs tasks under varying and unpredictable cir-
cumstances, without significant human oversight, or that can learn from their 
experience and improve their performance. . . . They may solve tasks requiring 
human-like perception, cognition, planning, learning, communication, or 
physical action.”2 These intelligent systems generally use machine learning to 
form predictions and adaptively make adjustments based on new information 
in their environment (Russell and Norvig 2010). Because AI has such a wide 
array of applications across sectors and disciplines, it is viewed as a general 
purpose technology and important source of economic growth (Agrawal, Gans, 
and Goldfarb 2018). Automation technologies usually focus on automating a 
specific process, or multiple commonly understood processes, to reduce labor 
intensity, which differs greatly from highly complex, human-like decision logic, 
which has already been observed in the emerging embodiments of AI.

Although the general concepts and algorithms within AI are decades 
old, AI has emerged as an especially powerful and widely applied tool for 

1 A recent study by Deloitte (2017) contains survey results that point out ambiguity in how many 
top executives and everyday citizens define AI.
2 Similarly, in the National Defense Authorization Act for Fiscal Year 2019, “the term ‘artificial 
intelligence’ includes the following: (1) Any artificial system that performs tasks under varying 
and unpredictable circumstances without significant human oversight, or that can learn from 
experience and improve performance when exposed to data sets. (2) An artificial system developed 
in computer software, physical hardware, or other context that solves tasks requiring human-like 
perception, cognition, planning, learning, communication, or physical action. (3) An artificial 
system designed to think or act like a human, including cognitive architectures and neural 
networks. (4) A set of techniques, including machine learning, that is designed to approximate a 
cognitive task. (5) An artificial system designed to act rationally, including an intelligent software 
agent or embodied robot that achieves goals using perception, planning, reasoning, learning, 
communicating, decision making, and acting.”
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performing not only existing tasks much more efficiently but also new tasks 
that were traditionally viewed as infeasible. To give just one example, research-
ers have created AI algorithms capable of classifying images even more 
reliably than humans can do under certain conditions, and at a much faster 
rate and scale than ever before (figure 7-1)—although these algorithms can 
still be tricked by savvy programmers (CSAIL 2017). More examples abound 
in other areas, ranging from natural language processing to theorem proving 
(Artificial Intelligence Index 2017). Other types of computer science and AI 
advances include solutions to automate high-skill human cognitive tasks, such 
as automated reasoning and intelligent decision support systems (Arai et al. 
2014; Davenport and England 2015; Kerber, Lange, and Rowat 2016; Mulligan, 
Davenport, and England 2018).

The convergence of two factors have made these remarkable advances 
possible. First, accumulated decades of sustained growth in technology have 
led to an explosion in computing power. As Gordon Moore (1965) first observed, 
computing power historically doubles every 18 months. These advances have 
led to an increase in transistor density, which, combined with the declining 
cost of manufacturing integrated circuits, have led to a staggering increase in 
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computing power (Brynjolfsson and McAfee 2014).3 Moreover, lower manufac-
turing costs for hardware have been complemented by annual price declines 
in cloud computing of 17 percent between 2009 and 2016 (Byrne, Corrado, and 
Sichel 2018).

Second, the colossal increase in data availability has complemented the 
surge in computing power, allowing researchers to develop and test AI algo-
rithms on much larger data sets.4 The emergence of big data has been driven 
by “digitization,” which means the ability to take different types of information 
and media, ranging from text to video, and convert them into streams of ones 
and zeros—“the native language of computers and their kin” (Brynjolfsson 
and McAfee 2014, 37). Researchers have also found creative ways to convert 
different types of digital media into comprehensive sets of numeric quantities, 
which often involve “feature engineering,” or optimizing the permutations of 
data inputs, to produce reliable predictions (Arel, Rose, and Karnowski 2010).

Machine Learning
Machine learning (ML) is integral to the design and implementation of AI (Russel 
and Norvig 2010). Unlike computers, which tend to execute a set of prespeci-
fied rules, AI is defined by the ability to learn and adapt to its environment.5 
There are three main types of ML algorithms—supervised, unsupervised, and 
reinforcement learning—which we summarize in the next paragraphs (Hastie, 
Tibshirani, and Friedman 2009). 

First, supervised learning algorithms take a set of descriptive variables 
that are matched with a corresponding label (“outcome variable”) and “learns” 
the relationship between the two. For example, to predict college attainment, 
a researcher could use data on whether the individual has a college degree, 
together with a set of individual characteristics, such as parental education 
and gender, to estimate classification models. Supervised learning algorithms 
take a subset of the sample and search for the parameters that best fit the data 
based on a prespecified objective function. 

Second, unsupervised learning algorithms, in contrast to supervised 
ones, take a set of feature variables as inputs and detect patterns in the data. 
Though these algorithms have not been as prolifically applied as supervised 

3 An integral part of the efficiency gains among producers of computer equipment is the rapid 
decline in effective prices of semiconductors due to advances in chip technology (Triplett 1996). 
These empirical patterns have also continued during the past decade. For example, Byrne, Oliner, 
and Sichel (2017) find that semiconductor prices fell by 42 percent, relative to the meager 6 percent 
decline in the producer price index between 2004 and 2009.
4 Computer scientists often refer to the process of developing and testing AI algorithms as 
“training.” The process refers to estimating model parameters on a subsample, subsequently using 
the estimated parameters to predict out-of-sample. The quality of the out-of-sample prediction is 
used to, sometimes iteratively, tune model parameters.
5 Russell and Norvig (2010, 43) remark that algorithms in deterministic settings are not a form of AI 
because they are executing a set of preprogrammed tasks.
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learning algorithms, they are often used to simplify otherwise computationally 
demanding problems by reducing the number of variables that need to be kept 
track of, sometimes referred to as “dimensionality reduction” (Bonhomme, 
Lamadon, and Manresa 2017).

Third, reinforcement learning algorithms have been among the most 
influential class of algorithms in the emerging set of AI and big data applica-
tions. Unlike supervised and unsupervised algorithms, reinforcement learning 
algorithms do not require complete representation of input/output pairs, 
but rather only require an objective function. This function specifies how the 
intelligent system responds to its environment under arbitrary degrees of sto-
chasticity (i.e., the extent to which it involves a random variable). Consider the 
game of chess, which contains millions of potential moves. Though individuals 
face cognitive limitations that preclude internal simulation of thousands, and 
potentially millions, of scenarios simultaneously, “deep learning” reinforce-
ment learning algorithms have largely overcome these limitations. For exam-
ple, Google’s new AI algorithm, AlphaZero, defeated the world’s best chess 
engine, Stockfish. Unlike Deep Blue—the IBM supercomputer that defeated 
Garry Kasparov, the world’s leading chess champion in 1997—AlphaZero 
trained itself to play like a human, but at an unprecedented scale and aptitude 
(Gibbs 2017). 

One way a reader can picture this evolution of computing power is by 
considering the computer modeling of sports outcomes. It is now common for 
commentators at sporting events to announce midgame the probability, given 
the current score, that the team that is currently ahead in the score will indeed 
win the game. At one point during the 2017 American football championship 
game Super Bowl LI, the New England Patriots had a mere 0.3 percent chance 
of victory (ESPN Analytics 2018). This probability was calculated based on data 
from previous games and an analysis of the percentage of times that a team 
went on to win after trailing by a certain margin deep into the third quarter. 
Algorithms used by various networks and media platforms allow for these odds 
to be constructed from historical performance data of past teams that have 
been in similar situations.

Moreover, as with other games, like chess, estimating probabilities of 
winning can grow in complexity because of real-time interactions between the 
players, as well as the astronomical number of possible outcomes that can be 
reached, even without repetitive actions between the start and end of a game. 
In a game with finite outcomes, given an enormously powerful computer and 
a set of initial conditions describing the configuration of pieces on the board, 
a program could explore all possible moves and responses from that state and 
“solve” the game. The optimal computer would then, for a given player, recom-
mend a move from that initial state associated with the highest probability of 
victory for that player. 
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However, because there are infinite possible future states associated 
with almost every state of the world in a chess match, software must discover 
the types of moves that tend to lead to victory because exploring all future 
paths and developing a discrete solution is impossible for a problem with infi-
nite outcomes. A computer equipped with AI, however, allows for a combina-
tion of human rationality with computing probabilities of victory. This provides 
improved predictions that can lead the AI algorithm to “play” the game, rather 
than attempting to solve it. 

Applications of AI Technology
Today, facial recognition is possible because data (e.g., images) can be not only 
digitized but also collected and analyzed at scale. Suppose our AI machine, in 
addition to assessing the remaining possible outcomes, could also discern the 
identities of the players themselves and use this information to further revise 
its predictions based on knowledge about the two players. For instance, the 
probabilities of victory associated with an advantageous position would need 
to be updated if player 1 was an amateur and player 2 was a professional. 
However, if player 1’s position was so advantageous that the odds of victory 
were 99.7 percent, even someone as talented as the professional could lose if 
forced to start from a severely disadvantaged position. In addition to assess-
ing situations from a static perspective, an AI algorithm that can discern the 
identity of the player through facial recognition can choose strategies that are 
tailored to the player’s weaknesses.

Another example of how AI can complement society and human tasks is 
through its effects on the delivery and production of educational services. One 
of the primary types of AI educational applications are personalized learning 
algorithms that allow instructors to tailor information to the unique ways that 
individuals learn. For example, Georgia State University sends customized text 
messages to students during the college enrollment process, which Page and 
Gehlbach (2017) find is associated with a 3.3-percentage-point increase in the 
probability that individuals will enroll on time. 

Similarly, Arizona State University uses adaptive and hybrid learning 
platforms that enable teachers to offer more targeted learning experiences 
(Bailey et al. 2018). These platforms provide instructors with real-time intel-
ligence to assess how well their students understand each concept, allowing 
instructors to pivot, when needed, to improve the learning experience. In sum, 
economists find significant returns on student outcomes from these “edtech” 
programs (Escueta et al. 2017). Given that at least 54 percent of all employees 
will require significant reskilling and/or upskilling by 2022 (World Economic 
Forum 2018), educational institutions will need to become increasingly adap-
tive, finding ways to integrate technology to simultaneously reduce costs, 
improve quality, and raise agility.
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AI systems have mastered tasks that have traditionally been performed 
by humans. One way of measuring the breadth of these AI-based applications 
is to examine the clusters of emerging research content. Using the universe of 
Scopus and Elsevier articles, Elsevier (2018, 34) identified seven clusters of AI 
capabilities, including “machine learning and probabilistic reasoning, neural 
networks, computer vision, natural language processing and knowledge rep-
resentation, search and optimization, fuzzy systems, and planning and deci-
sionmaking.” Moreover, using the subset of papers that have been uploaded 
to the research platform arXiv, Elsevier (2018) finds that articles about core AI 
categories that are posted on arXiv have increased by 37.4 percent in the past 
five years. 

These sustained research efforts will continue to expand AI’s capabilities. 
Indeed, Brynjolfsson and McAfee (2014, 52) remark that “we’re going to see 
artificial intelligence do more and more, and as this happens costs will go 
down, outcomes will improve, and our lives will get better.” Already, AI is being 
applied in four main areas of the marketplace, according to Lee and Triolo 
(2017): (1) the Internet (e.g., online marketplaces); (2) business (e.g., data-
driven decisionmaking); (3) perception (e.g., facial and voice recognition); and 
(4) autonomous systems (e.g., vehicles and drones). Take, for instance, the 
domain of perception AI. One discovery helps individuals who have historically 
been visually impaired to use a device with digital sensors that can survey 
the physical environment and create sound waves through the bones of the 
head. The technology clips onto eyeglasses, and after being oriented toward 
text within the user’s vision and signaled to read the source by the wearer, the 
device reads and verbalizes the text (Brynjolfsson and McAfee 2014). Similarly, 
Brynjolfsson and McElheran (2016) also illustrate how manufacturing establish-
ments using data to influence their decisionmaking exhibit greater productivity 
than their counterparts. Companies in the digital economy will increasingly 
compete based on their ability to use data efficiently and strategically.

Technological Progress and the Demand for Labor
This section explores the interaction between technological progress and the 
demand for labor. First, it gives a brief history of technological change and 
work. Then it describes the effects of technological progress on investment 
and wages. Finally, it considers how specialization and comparative advantage 
affect trade between people and machines.

A Brief History of Technological Change and Work
Do technological advances reduce employment? That is not a new ques-
tion—concern about job losses caused by automation dates back at least two 
centuries. During the early 19th century, English artisans (Luddites) in the 
rapidly changing textile industry famously attempted to destroy the mills and 
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automated machine looms that they believed threatened their livelihoods. 
Despite the opposition of the Luddites to automation, the next two centu-
ries witnessed a transition to mechanization of much of the physical labor 
performed by workers (Galor and Weil 2000). The agriculture sector provides 
a notable example. Tractors replaced horsepower and manual labor in 19th-
century plowing work, and labor-intensive manual tasks were mechanized 
(Rasmussen 1982). Similar examples abound among many types of skilled 
artisanal work after the introduction of machine tools, as well as the transfor-
mation of manufacturing after advances such as steam power and electricity. 

Automation’s effects on labor are no longer confined to manufacturing 
and agriculture (Brynjolfsson and McAfee 2014; Autor 2015; Polson and Scott 
2018). Computers and constantly evolving software have eliminated the need 
for many of the administrative and clerical tasks that had long been performed 
by white-collar workers in commercial business. Indeed, before the word “com-
puter” referred to a microprocessor on a desk, it was a job title for a person who 
laboriously performed simple arithmetic or more complex mathematical cal-
culations. Today, an accountant or financial specialist can do in seconds what 
would have once taken hours or days of painstaking computation by a team of 
educated people. An online tax preparation system can do much of what a pro-
fessional certified public accountant might have done, while being faster and 
more accurate. White-collar work environments are likely to undergo further 
disruptive changes as AI technologies continue expanding into logistics and 
inventory management, financial services, complex language translation, the 
writing of business reports, and even legal services. Even medical diagnoses 
are likely to involve AI technologies in the foreseeable future.

Economists and policymakers have long studied the question of job dis-
placement caused by technological advancement. In just one example, in 1964 
Congress authorized the National Commission on Technology, Automation, 
and Economic Progress to study the effects of technological advancement, par-
ticularly in relation to unemployment. The commission’s 1966 report included 
the finding that “technology eliminates jobs, not work” (Bowen 1966, 9). In a 
more contemporary discussion, David Autor (2015, 5) noted that “journalists 
and even expert commentators tend to overstate the extent of machine sub-
stitution for human labor and ignore the strong complementarities between 
automation and labor that increase productivity, raise earnings, and augment 
demand for labor.” Though the introduction of new technologies can create 
job displacement, examining technological change from a historical perspec-
tive shows that these transformations do not lead to permanently lower 
employment, but rather an increase in demand for new tasks (Mokyr, Vickers, 
and Ziebarth 2015). 
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Effects of Technological Progress on Investment and Wages 
Capital investments, such as in machines and software, embody AI, which 
Brynjolfsson, Rock, and Syverson (2017) call a general purpose technology. 
New investments that embody AI are expected to be more like (“closer substi-
tutes for”) labor than traditional capital investments were. Here, we begin by 
relating capital to labor and productivity and explain why labor is expected to 
receive most of the net benefits from AI in the long run. In particular, we argue 
that, though AI is expected to increase real wages on average, the economy 
has three phases of adjustment where the wage effects are different. In the 
anticipation phase, real wages are somewhat elevated as businesses begin to 
switch to activities that are intensive in cognitive tasks, but still do not have 
machines to adequately perform those tasks. Then, AI arrives and can fill many 
of the positions, temporarily depressing real wages during the implementation 
phase as workers compete with the new machines. In the long run, business 
formation catches up with the new technology and real wages are higher. 

Growth in labor productivity can come from changes in three distinct 
factors: a rise in the quality of labor, which can occur with greater education, 
training, or skill attainment; a rise in capital, which occurs when firms invest 
in productive inputs, such as machines, factories, or computers; or a rise in 
what economists call total factor productivity (TFP), which pertains to other 
determinants of productivity, ranging from regulatory frictions to unmeasured 
quality improvements (Solow 1957).

TFP growth often increases real wages and the return to capital in the 
short run because it makes the factors more productive.6 A greater return to 
capital also stimulates additional investment leading to business creation 
and growth. As a result of the additional capital, real wages rise and, because 
new capital competes with old capital, the return to capital declines. Indeed, a 
century or more of economic growth has increased real wages by more than a 
factor of five (Fisk 2001; Zwart, van Leeuwen, and van Leeuwen-Li 2014), while 
the return to capital has been almost constant over time (Caselli and Feyrer 
2007; Mulligan and Threinen 2011). Nearly all the long-run benefits of TFP go to 
labor by reducing the effective prices of goods and services or by raising total 
compensation (Caselli and Feyrer 2007; CEA 2018c). 

Although real wages trend up and the return to capital does not, as dis-
cussed above, labor’s share of gross domestic product (GDP) can be constant, 
rising, or falling, depending on the type of technological change and the degree 
to which the new investment substitutes for labor in the production process. 
In other words, some types of TFP growth may reduce labor’s share of GDP in 
the long run even while the entire benefit from TFP growth goes to workers in 
the form of higher real wages. For example, Karabarbounis and Neiman (2014) 

6 Our discussion of wages in the text that follows views it as representing all compensation from 
work, including fringe benefits. 
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show that the decline in the relative price of investment goods (e.g., due to the 
expansion of information technology and computers) helps to account for the 
decline in the labor share.

Although the TFP growth occurring during most of the 20th century did 
not reduce labor’s share of national income (Kaldor 1961), AI might reduce it 
in the long run to the degree that it is more substitutable for labor than 20th-
century capital investments were. The transition to a labor-substitutable AI is 
illustrated in figure 7-2 from the perspective of the capital market. Because a 
downward-sloping capital demand curve shows the relationship between the 
amount of capital and its marginal contribution to output, the area under the 
curve up to the equilibrium amount of capital is equal to the total amount of 
output. This output is divided between capital and labor, with capital’s income 
equal to the rectangular area, which has dimensions equal to the amount of 
capital and the rental rate per unit of capital. In the figure, the triangular area 
above the rectangle is the output not paid to capital, which is labor income.

The arrival of AI makes new capital investments more productive, which 
is why the capital demand curve is shifted up by the discovery. Initially, AI 
investments earn returns greater than the normal capital return, as at the point 
b in figure 7-2, which stimulates more investment. The additional investment 
begins to drive down the return to capital, but more slowly than investment 
did in earlier eras, because the new investment does not compete as directly 
with existing capital, which is why the new demand curve is flatter than the old 
one. In the long run, the return to capital falls back to normal, the economy 
is at point c in figure 7-2, and labor income has increased by the amount of 
the shaded area L.7 Labor’s share is lower in the long run than it was before 
AI arrived, as shown in the diagram by the fact that the rectangular increment 
to capital income is disproportionate to L. Ironically, the addition to capital 
income is a symptom of more investment and real wage growth due to the 
assumption that AI investments are more substitutable for labor than older 
types of capital. 

In the short run, after the arrival of AI, new investment that is a good 
substitute for labor reduces real wages to the extent that human workers com-
pete with AI for jobs and the additional business formation is not yet complete. 
This phase resembles the commonly expressed concern that workers would 
be harmed by AI. In terms of figure 7-2 the capital rental rate r at point b is 
temporarily elevated, at the expense of labor income. However, it is important 
to also consider the phase before AI arrives. Here, real wages are elevated by 
the anticipation of AI because businesses are formed with the expectation that 
they will eventually have both human and machine labor, but in the meantime 
will need to perform their operations entirely with human labor.

7 In the limit in which AI is a perfect substitute for human workers, the area L is zero. The subsection 
of this chapter titled “Trade between People and Machines” explains why the perfect-substitution 
case is ruled out by market forces.
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This stylized discussion highlights the situation that though AI can 
depress real wages for a period if it is a good substitute for labor, ultimately AI 
will raise real wages above what they were before AI because of the investment 
and increased productivity that it stimulates. These conclusions are consistent 
with not only theoretical models of economics featuring AI in general equi-
librium (Aghion, Jones, and Jones 2017) but also with evidence on how the 
introduction of robots raised labor productivity across 17 countries between 
1993 and 2007 (Graetz and Michaels 2018). Moreover, taking the information 
technology (IT) revolution as an analogue, Autor, Katz, and Krueger (1998) 
show that the introduction of computers led to strong and persistent growth 
for skilled workers, which accounts for the increased demand (and subsequent 
expansion of supply) for workers who have gone to college.

In summary, even though AI is expected to temporarily decrease real 
wages, in the long run it will increase real wages, on average, because of the 
investment it stimulates. The next section highlights the role of comparative 
advantage behind the reallocation of tasks across and within sectors of the 
labor market (Acemoglu and Autor 2011), explaining how firms will apply AI 
in ways that are complementary to labor and therefore have a more positive 
effect on real wages, and a less negative effect on labor’s share of GDP than 
shown in figure 7-2.
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Aggregate quantity of capital (Q)

Capital rental rate (r)

Supply Long run
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L
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Figure 7-2. The Effect of AI on the Amount of Capital and the 
Distribution of Factor Incomes

Source: Adapted from Jaffe et al. (2019). 
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Trade between People and Machines
When and how much is AI likely to substitute for human tasks? The principle 
of comparative advantage tells us that human workers can benefit from being 
in the same market with machines, even if these machines excel at many 
traditionally human tasks. The benefit comes from workers’ specialization in 
the tasks humans can do better than machines, or at least the tasks where 
humans are at the smallest disadvantage (Autor 2015). Specialization allows 
the machines to be used on their best tasks without wasting resources on tasks 
that people can do at a lower opportunity cost. To put it another way, even if it 
were technologically possible to let machines do all tasks, and do them better 
than humans do, an owner of the machines would sacrifice profits by deploying 
them without regard for specialization. 

Consider the operation of a store that requires cashier tasks, communi-
cation with suppliers, the delivery of products, and arranging displays. The AI 
machines perform the arrangement tasks 10 times better (in terms of speed 
and accuracy) than humans, and perform the other tasks 20 times better. Given 
comparative advantage, and assuming that the machines are cheap enough to 
justify using them for any task, profit-maximizing deployment will have work-
ers performing the arrangement tasks, thereby freeing up machines to do the 
other tasks where they are especially productive. The theory of comparative 
advantage means that humans inevitably have a comparative role to play, even 
if they do not have an absolute advantage in every task.

Moreover, the choice of which machines to deploy is not merely deter-
mined by what is technically possible with engineering and computer science.8 
Robocop, Star Wars’ C-3PO, and other near-human machines are great enter-
tainment, but in many situations they would be poor investments precisely 
because of their close similarities to humans.9 Because machines and AI 
are ultimately another form of capital, designing machines to complement, 
rather than substitute for, humans will be more profitable. In other words, the 
potential for specialization implies that producers will look for ways to mag-
nify differences with people. For example, Abel and others (2017) explain how 
providing algorithms with expert (human) advice—part of a broader class of 
“Human-in-the-Loop Reinforcement Learning”—can improve various aspects 
of learning and prediction.

8 Consider the analogous case of agricultural tobacco production. Though some countries, like 
Brazil, display very labor-intensive tobacco production (Varga and Bonato 2007), U.S. production 
of tobacco is highly mechanized (Sykes 2008). For a similar illustration from cotton production, see 
FAO (2015). In this sense, the mere presence of capital does not guarantee its use; the opportunity 
cost of labor in an economy will drive the division of labor and degree of specialization. Lagakos 
and Waugh (2013) formalize these insights within a general equilibrium Roy model with agriculture 
and nonagriculture sectors.
9 Research in human–machine interaction finds situations in which people can more easily and 
intuitively work with robotic partners when the robots look and behave in ways similar to humans. 
In these cases, people can project human expectations of how robots should act, and thus do not 
need to be trained (or study user manuals) in order to figure out how to work with the robot.
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The purposeful acquisition of comparative advantage has long been 
observed in human labor markets (Becker and Murphy 1992). Consider an elec-
trician and a carpenter who work together to build a high-quality house. Their 
comparative advantage is obvious at the time that they are building the house, 
but neither of them was born with his or her specialized skills. They both chose 
to specialize knowing directly—or perhaps indirectly, through market prices—
that they would be a more valued member of a construction team if they could 
excel at carpentry, or excel at electrical work, rather than having mediocre 
skills at both types of tasks. Robotics research already suggests that productiv-
ity is enhanced when machines specialize (Nitschke, Schut, and Eiben 2012). 
Also see, for example, box 7-1, which describes the Defense Advanced Research 
Projects Agency’s (DARPA’s) initiatives regarding “partnering with machines.” 
In light of these examples of complementarity between AI and humans, the 
entertainment industry’s anthropomorphic portrayal of robotics and artificial 
intelligence is somewhat misleading about how much these types of invest-
ments will substitute for human workers.

The concern, of course, is that the price associated with human tasks 
will decline to a point where humans are driven out of the workforce and are 
not incentivized to work. For example, some manufacturers might find that 
production is cheaper with complete automation, rather than by retaining a 
mix of some human employees and AI. However, specialization and trade also 
occur at the market level. A robot-intensive business may engage in one phase 
of production, selling its output to a person-intensive business at a later phase 
of production. In this sense, even if certain tasks traditionally performed by 
humans are instead now done by machines, humans will nonetheless hold a 
comparative advantage for other tasks and thus will continue to play a role in 
production processes.

Although there are some concerns about complete automation of human 
activities (Frey and Osborne 2017), the emerging empirical evidence suggests 
that the main effects of AI and automation are on the composition of tasks 
within a job, rather than on occupations in general. For example, Brynjolfsson, 
Rock, and Mitchell (2018) introduce an index of suitability for machine learning 
(SML), and they find that, though most occupations have at least some tasks 
that are SML, few (if any) have tasks that are all SML. Similarly, Nedelkoska and 
Quintini (2018) use data on skills across occupations and 32 countries, and they 
find that, though 14 percent of jobs are likely to be automated by over 70 per-
cent, 26 percent of jobs face a change of automation of 30 percent or less. The 
key observation is that, as automation progresses, workers will increasingly be 
drawn to the jobs and tasks that are more difficult to automate. Astute poli-
cymaking will nonetheless play a role in promoting workforce development, 
particularly for less educated workers—through, for example, the Pledge to 
America’s Workers, which we discuss later in the chapter.
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Box 7-1. DARPA: Strategic Investments in 
Artificial Intelligence and Cybersecurity

The Defense Advanced Research Projects Agency (DARPA) is focused on a 
future where AI is a complement to humans in the production of goods, ser-
vices, and ideas—that is, where humans can safely “partner with machines” 
more as colleagues, rather than as tools (DARPA 2018a). To facilitate this 
vision, DARPA is actively funding the development and application of a so-
called third wave of AI technologies that would result in intelligent machines 
capable of reasoning in context. In particular, DARPA announced a $2 billion, 
multiyear investment in new and existing programs in September 2018. These 
investment areas include “security clearance vetting or accrediting software 
systems for operational deployment; improving the robustness and reliability 
of AI systems; enhancing the security and resiliency of machine learning and 
AI technologies; reducing power, data, and performance inefficiencies; and 
pioneering the next generation of AI algorithms and applications, such as 
‘explainability’ and commonsense reasoning” (DARPA 2018a).

DARPA has already piloted a number of successful programs, including 
the Cyber Grand Challenge in 2016—a competition that showcased the state 
of the art in Cyber Reasoning Systems (DARPA 2018b). Competing systems 
played an “attack-defend” style of “Capture the Flag,” where contestants 
were tasked with developing AI algorithms to “autonomously identify and 
patch vulnerabilities in their own software while simultaneously attacking the 
other teams’ weaknesses” (Hoadley and Lucas 2018).

Although conventional cybersecurity programs may take up to several 
months to find and patch problems, the competing and largely rules-based 
algorithms found the bugs in seconds. According to DARPA (2016), “the need 
for automated, scalable, machine-speed vulnerability detection and patching 
is large and growing fast as more and more systems . . . get connected to and 
become dependent upon the Internet.” The major innovation in the Cyber 
Grand Challenge was the demonstration that AI can play both an offensive 
and defensive role. DARPA continues to build out these human-machine cyber 
detection capabilities for pinpointing and addressing vulnerabilities through 
its Computers and Humans Exploring Software Security program, known 
as CHESS. The activities funded by CHESS involve helping computers and 
humans work collaboratively through tasks, such as finding zero-day vulner-
abilities at scale and speed. 
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The Uneven Effects of Technological Change
This section delineates the uneven effects of technological change. It first 
considers these changes’ differential effects by occupation and skill. Then it 
explores the scale and factor-substitution effects of an industry’s technological 
progress and how they moderate the effect on labor. Finally, the section asks 
when we will see the effects of AI on the economy.

Differential Effects by Occupation and Skill
Many types of technological change affect workers and industries in heteroge-
neous ways. For example, the widespread adoption of computers and informa-
tion technology during the past several decades has enormously increased 
productivity for certain types of workers, but has brought comparatively little 
or no productivity enhancement for others (Acemoglu et al. 2014). Because 
earnings are determined by workers’ productivity, such changes in technology 
are expected to have varying effects on workers with different sets of skills, 
such as workers with or without a college or graduate education (Katz and 
Murphy 1992). 

Economists have concluded that “skill-biased technical change” can 
account for most of the observed rise in earnings disparities between some 
higher-skilled workers (whose productivity was greatly enhanced by technol-
ogy, like computers) and some lower-skilled workers (who were less affected), 
which was amplified during the IT revolution (Autor, Katz, and Krueger 1998; 
Autor, Levy, and Murnane 2003). This disparity is in part explained by the com-
plementarity between capital and certain types of skills (Krusell et al. 2000). 
In the context of AI and automation, the complementary relationship means 
that there is processing power that mainly benefits workers who use computer 
technology. In this sense, the more rapid increase in earnings among college-
educated workers, despite the corresponding rise in the supply of these work-
ers, represents a skills premium for individuals who can leverage technology to 
augment their productivity (Juhn, Murphy, and Pierce 1993). 

The Scale and Factor-Substitution Effects of an Industry’s 
Technological Progress 
Technological progress allows an industry to produce the same output with 
fewer inputs (e.g., workers). At first glance, we might therefore expect workers 
to leave the industry and find work elsewhere. One could point to the example 
of changes in agriculture in the 20th century, when the agricultural employ-
ment share dropped from 41 to 2 percent between 1900 and 2000 (Autor 2015), 
at the same time that agricultural TFP rapidly increased (Herrendorf, Rogerson, 
and Valentinyi 2014). See box 7-2 for an example of technological change in the 
agricultural sector that has fueled productivity.
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Box 7-2. Technological Change in Agriculture and Rural America
Agriculture has been one of the sectors experiencing rapid technological 
change, including the computer science revolution. For example, output per 
hour in the agricultural sector grew annually by 4.3 percent between 1948 
and 2011, whereas it grew annually by 2.4 percent in manufacturing (Wang 
et al. 2015).

For example, precision agriculture—which refers to a broad class of AI 
applications allowing for precise control over agricultural inputs based on 
detailed, site-specific data—has allowed farmers to improve the productivity 
of soil by better understanding the characteristics that are most conducive 
to growth within a specific geographic area; see figure 7-i for evidence on 
its incidence across peanut and soybean farming. Moreover, these systems 
contain sensors that allow farmers to monitor crop yields and self-guided 
tractors and variable rate planters that vary their seeding and fertilizer 
rates based on fertility and past yield data. In brief, these technologies have 
allowed corn and soybean farmers, among others, to produce more at lower 
costs (Schimmelpfennig 2016).
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However, as an industry’s productivity advances, it is producing each unit 
of output at a lower cost and thereby selling at lower prices. Consumers of this 
output respond by purchasing more, which is a force toward more industry 
employment known as the “scale effect” on labor demand. The productivity 
revolution in agriculture did result in more production and higher sales of food. 
However, because consumers’ demand for agricultural output is price inelas-
tic—consumers spend less of their budget on agriculture when it becomes 
cheaper—the “factor-substitution effect” dominated the scale effect on the 
demand for agricultural labor.10 

If demand for a good is price elastic—meaning that consumers spend 
more of their budget on the good when prices fall—then cost-reducing tech-
nology might raise that sector’s shares of employment and GDP. Consider the 
recent history of taxi dispatchers, who take calls from individuals desiring a 
ride and direct a driver to the pickup point. About a decade ago, companies dis-
covered how to use a smartphone to perform the tasks of the dispatcher, and 
these companies famously distributed such an app to millions of smartphone 
users. The result was a dramatic increase in the number of people working in 
the transportation industry, broadly understood to include drivers for Uber, 

10 The decomposition of labor demand into scale and factor-substitution effects is usually 
attributed to Alfred Marshall (1890) and John Hicks (1932).

AI is also used in animal agriculture. For example, over 35,000 robotic 
milking systems are in operation globally on dairy farms. According to Salfer 
and others (2017), farms using robotic milking systems are much more pro-
ductive, selling 43 percent more milk per hired worker and 9 percent more 
milk per cow. Moreover, rather than displacing humans, the introduction of 
automation in dairy farms has allowed labor and management to reallocate 
their time toward maintaining animal health, analyzing records, and manag-
ing reproduction and nutrition on the farms. For example, John Deere runs 
a two-year associate degree program to help its employees not only stay 
current on the latest farming machine tools but also acquire new skills in data 
science (Burkner et al. 2017).

However, rural Americans have not always seen the gains of techno-
logical progress (Forman, Goldfarb, and Greenstein 2012). Motivated by these 
disparities, President Trump signed Executive Order 13821 in January 2018 
(White House 2018c), expanding and streamlining access to broadband in 
rural America. Given the importance of high-speed Internet access for data 
science capabilities, connectivity in rural America is essential for its eco-
nomic competitiveness. Moreover, the Trump Administration is committed 
to investing in and promoting workforce development through, for example, 
the Pledge to America’s Workers, which we discuss in below in this chapter’s 
main text.
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Lyft, and other ride-sharing platforms. By observing what happened to overall 
employment in the industry (which provides rides for passengers, and which 
now includes ride sharing in addition to traditional taxis), we can see that it had 
price-elastic demand. The cost reductions associated with the new technol-
ogy increased the number of rides even more than it increased the number of 
humans giving rides. 

Although there is some difficulty in measuring participants in the sharing 
economy in ways that are directly comparable with traditional taxi employ-
ment, there is emerging evidence of its expansion. For example, JPMorgan 
Chase (2018) found that the share of families generating earnings on trans-
portation platforms over the course of a year increased to 2.4 percent of the 
labor force in March 2018 after the inception of ride sharing in about 2010 
(figure 7-3).11 A large part of the increase came from the introduction of 460,000 
driver-partners in just three years under the Uber platform alone (Hall and 
Krueger 2018). Increasing empirical evidence suggests that these ride-sharing 
applications not only have provided significant flexibility for drivers (Chen et 
al., forthcoming; Koustas 2019) but also have generated social welfare benefits 
for those who are not platform participants (Cohen et al. 2016; Makridis and 
Paik 2018).

These ride-sharing applications are an early, pre–autonomous vehicle 
(AV) manifestation of transportation as a service. Whereas transportation has 
traditionally been about assets (i.e., vehicle ownership), it may increasingly 
move toward services as more AVs enter the market. For example, even though 
PricewaterhouseCoopers (PwC) estimates that the transportation sector may 
require 138 million fewer cars in Europe and the U.S. by 2030 (PwC 2018a), 
it also estimates that the market for shared, on-demand vehicles may grow 
to $1.4 trillion by 2030, in comparison with $87 billion in 2017 (PwC 2018b). 
Though predicting the growth in the AV market is outside the scope of this 
Report, the emerging patterns in ride sharing and AVs are illustrative examples 
of the impact of technological change.

When Will We See the Effects of AI on the Economy? 
Some economists have noted a puzzling productivity paradox with the 
historical and ongoing patterns described above. Although most researchers 
agree that the recent advances in AI and automation promise production 
possibilities that are even greater than the initial emergence of the digital 

11 The National Academies (2017) also cite estimates pointing toward growth from 10 to 16 percent 
in alternative work arrangements between 2005 and 2015. According to Katz and Krueger (2018), 
who did a survey in November 2015, 0.5 percent of workers report working through an online 
intermediary. Though there is debate about the measurement of alternative work arrangements, 
a recent assessment by Katz and Krueger (2019) concludes that, despite the only modest increase 
in these arrangements obtained from the 2005 and 2017 Contingent Work Surveys in the Current 
Population Survey, this survey’s data are likely underestimates.
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economy (Brynjolfsson and McAfee 2014), the growth of labor productivity, at 
least in the way it has traditionally been measured, has been surprisingly slug-
gish.12 For example, in contrast to the 2.8 percent annual growth in aggregate 
labor productivity seen in the United States between 1995 and 2004, its annual 
growth between 2005 and 2015 was only 1.3 percent (Syverson 2017). This pat-
tern is consistent with growth across other economies; Syverson (2017) found 
the annual growth rate in labor productivity was 2.3 percent between 1995 and 
2004 in 29 sampled countries, but fell to 1.1 percent between 2005 and 2015.

If technological change and the adoption of AI have been especially 
rapid during the past decade, what can account for the slower growth of labor 
productivity? One possibility is that the productivity effects of technology 
may have been oversold (Gordon 2000) and the period of rapid growth of the 
Information Age was a temporary aberration in a long-run trend toward slower 
technology-related productivity growth (Gordon 2018). However, Oliner and 
Sichel (2000) show, using a multisector neoclassical growth model with both IT 
and non-IT capital, that the increase in IT and corresponding efficiency gains 
account for two-thirds of the increase in labor productivity for the nonfarm 

12As the Nobel laureate Robert Solow famously said, “You can see the computer age everywhere 
but in the productivity statistics.” 
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business sector over the 1990s.13 Moreover, Byrne, Oliner, and Sichel (2013) 
apply the same framework and fit more recent data between 2004 and 2012, 
suggesting that there is no inconsistency with theory. Jorgensen and Stiroh 
(2000) also obtain slightly lower contributions to growth from computer 
hardware because they use a broader definition of output. Yet another related 
explanation is that the expansion of credit in the early 2000s led to a misal-
location of investment into less productive sectors, creating a drag on growth 
(Borio et al. 2016). However, productivity has recently ticked up (e.g., see 
chapter 10 of this Report). Therefore, secular stagnation and the misallocation 
of investment do not appear to be viable explanations.

Another possibility is that our official estimates of growth and productiv-
ity fail to capture many of the recent gains from technological advancement. 
Many of today’s new technologies involve little or no direct cost to consumers, 
but give them great utility. These developments include, for example, Internet 
social networks, information search capabilities, and downloadable media. A 
quick Internet search today can yield information that, a few generations ago, 
would have required a team of individuals searching a university library—such 
benefits are not captured in our measurement of GDP. Though these benefits 
are clearly important factors behind consumer welfare (Brynjolfsson, Eggers, 
and Gannamaneni 2018), mismeasurement between 2005 and 2015 would 
need to be unrealistically high to account for the sluggish GDP growth, relative 
to the overall trend (Syverson 2017).

Perhaps the strongest argument for why productivity statistics in recent 
history have not shown the expected benefits from the new technologies is 
that, for practical reasons, there have so far simply been lags between produc-
tivity and the widespread implementation of AI and ML. The theoretical genesis 
of this argument is an insight from Paul David (1990). Much as the dynamo 
and the computer were fundamental components of a broader technological 
infrastructure, AI is a similar general purpose technology. Although these dis-
coveries often have immediate effects on productivity, their full impact is not 
realized until all the complementary investments are made, thereby creating 
a lag with investment. Brynjolfsson, Rock, and Syverson (2017) apply this logic 
to AI, reconciling the productivity paradox. Under their preferred interpretation 
of the data, we are simply awaiting the results of a necessary trial-and-error 
process and the productivity benefits will eventually be realized.

13 An integral part of the efficiency gains among producers of computer equipment is the rapid 
decline in effective prices of semiconductors due to advances in chip technology (Triplett 1996). 
Byrne, Oliner, and Sichel (2017) find that semiconductor prices measured with a hedonic index fell 
at an estimated annual rate of 42 percent between 2009 and 2013, much faster than the 6 percent 
decline experienced by the microprocessor producer price index series that provides a broader 
measure that subsumes semiconductors.
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Cybersecurity Risks of Increased 
Reliance on Computer Technology

Although technological advances and the emergence of AI have the potential 
to raise productivity and economic growth, the widespread reliance on tech-
nology also exposes the economy to new threats of malicious cyber activity. 
Cyber threat actors may be nation-states, cyber terrorists, organized criminal 
groups, “hacktivists” (individuals or collectives that aim to advance their social 
agenda through cyber interference), or simply disgruntled individuals. These 
threats transcend the typical boundaries of conflict, which have been analyzed 
through the lens of land, sea, and air. However, the emergence of the “Internet 
of Things” implies that anything connected to the Internet is vulnerable to 
malicious cyber intrusions, introducing threat vectors throughout the Internet 
ecosystem (Hoffman 2009).

Malicious cyber activity imposes costs on the U.S. economy through the 
theft of intellectual property and personally identifiable information, denial-of-
service attacks, data and equipment destruction, and ransomware attacks. The 
CEA estimated this cost to be as high as $109 billion in 2016 (CEA 2018b). Most 
innovations, however, lead to little-understood risks, whether for new drugs or 
computer technologies. This section describes our current assessment of the 
scope of cyber vulnerabilities, how they vary by industry, and the factors that 
may exacerbate failures to adopt cybersecurity best practices. 

Assessing the Scope of the Cyber Threat 
The 2018 Economic Report of the President (CEA 2018b) estimated the 2016 
costs of malicious cyber activity by adding up the costs experienced by the 
private sector, the public sector, and private individuals. It estimated the costs 
to the private sector using event-study methodology, whereby it quantified the 
loss of firm value as a result of an adverse cyber event. It estimated the costs 
to the corporate sector using event-study methodology, whereby it quantified 
the loss of firm value as a result of an adverse cyber event. The estimate further 
took into account the spillover effect of these costs to economically linked 
firms. On the basis of a sample of cyber incidents occurring between January 
2000 and January 2017, the Report estimated that the total economic cost for 
2016 ranged between $57 and $109 billion.

Although these event studies provide an important starting point for 
evaluating the costs of cybersecurity incidents, they presuppose that the tim-
ing of the event was reliably recorded and that investors knew the distribution 
of new risks induced by the event. However, to give just one example, when the 
largest recorded data breach, according to the Privacy Rights Clearinghouse, 
occurred in late 2013, it was not reported until September 2016 (Lee 2016). 
Delays between the time when an incident takes place and the time it is 
reported are a function of not only a firm’s ability to identify the incident but 
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also of varying State laws that mandate disclosure (Bisogni 2016).14 The 
affected firm’s own estimate of the damage caused by the 2013 breach has 
been updated and increased on several occasions, illustrating how difficult 
it can be to accurately calculate the cost. Moreover, data on the number of 
records or systems that have been breached often contain significant measure-
ment error and sampling variability.  

In addition to reporting discrepancies across States, there are also 
discrepancies across sectors. Makridis and Dean (2018) study sector discrepan-
cies using data from the Privacy Rights Clearinghouse and the Department of 
Health and Human Services to investigate the relationship between recorded 
breaches and firm outcomes. Though they find some evidence of a negative 
association between productivity and record breaches in the Health and 
Human Services data, where healthcare companies face greater disclosure 
requirements, they do not find such evidence in the data from the Privacy 
Rights Clearinghouse covering all sectors. Publicly traded companies, based on 
requirements from the Securities and Exchange Commission (SEC 2011), must 
provide timely and ongoing information in the periodic reports of material 
cybersecurity risks and incidents that trigger disclosure obligations. Beyond 
the Federal securities laws, other reporting standards in specific sectors, like 
the Health Insurance Portability and Accountability Act, may result in disclo-
sures of other data breaches that are not material.

Since 2009, the National Cybersecurity and Communications Integration 
Center (NCCIC) of the Department of Homeland Security (DHS) has served as 
the Nation’s flagship cyber defense, incident response, and operational inte-
gration center. The NCCIC serves as the national hub for cyber and communi-
cation information, technical expertise, and operational integration, operating 
a 24/7 watch floor tasked with providing situational awareness, analysis, and 
incident response capabilities to the Federal government; private sector stake-
holders; and State, Local, Tribal, and Territorial Partners. Through this process, 
DHS has been collecting robust data on the types of incidents that are having 
an impact on the Nation. Furthermore, the Federal Bureau of Investigation 
(FBI) also maintains CyWatch, a 24/7 command center for cyber intrusion 
prevention and response operations based on consensual monitoring and 
third parties that report to the FBI. CyWatch monitors must notify companies 
whose network security has been breached (34 U.S.C. § 20141 creates an obli-
gation for Federal law enforcement agencies to notify victims of a crime). After 
notification, CyWatch shares information with its partner law enforcement 
agencies—including the Department of Defense, DHS, and National Security 

14 Using data from the Privacy Rights Clearinghouse, Bisogni, Asghari, and Van Eeten (2017) 
estimate that adoption of the “inform credit agency” and the “notification publication by informed 
attorneys general” State provisions would increase the number of publicly reported cybersecurity 
breaches by at least 46 percent. 
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Agency—to improve preparedness and attribution behind attacks and guide 
appropriate responses.15

Despite the serious limitations associated with data from the Privacy 
Rights Clearinghouse, they nonetheless provide a time series proxy for the 
increased frequency of data breaches since 2005; see figure 7-4. Although 
there is an upward trend in cyber breaches between 2005 and 2018, these 
data largely understate the number of data breaches (Bisogni, Asghari, and 
Van Eeten 2017; ITRC 2019). The Internet Crime Complaint Center, a partner-
ship between the FBI and National White Collar Crime Center, gives victims 
of cybercrime an accessible reporting mechanism for alerting the authorities 
about suspected criminal or civil violations. Although not directly comparable, 
the 2017 “Internet Crime Report” announced a total of 301,580 complaints of 
cyber breaches in 2017. Even though these complaints represent a broader 
range of potential Internet crimes, the number far exceeds the 863 publicly 
reported incidents.

Recommending possible solutions for these cyber vulnerabilities requires 
an accurate understanding of their sources. We suggest that there are at least 

15 Though exact attribution in cyberspace is possible, it requires not only technical expertise but 
also leadership and information sharing and coordinating across the layers of an organization (Rid 
and Buchanan 2015).
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two underlying drivers behind the above-mentioned empirical regularities. 
First, organizations could lack informational awareness. Much like the quan-
titative management science literature on the adoption of best practices in 
business (Bloom et al. 2013), many organizations might simply not be aware 
of basic cyber hygiene practices. Second, the executives of organizations could 
suffer from incomplete incentives to promote cybersecurity practices. If, for 
example, financial metrics are easier to measure, relative to cybersecurity, then 
managers might allocate too little effort to cybersecurity due to a “multitasking 
problem” (Holmstrom and Milgrom 1991). Particularly because cybersecurity 
breaches generate network externalities, the private sector could underinvest 
in cybersecurity (Gordon et al. 2015).

Our preceding evidence on the lack of many basic cybersecurity practices 
among the most profitable companies in the U.S. economy suggests that a 
lack of information awareness and a lack of resources are unlikely to be the 
primary culprits behind existing vulnerabilities. Moreover, the “Cybersecurity 
Framework” of the National Institute of Standards and Technology’s (NIST 
2014), which details best practices, is publicly available and has been dissemi-
nated through many channels. These facts suggest that the alternative culprit 
could be incomplete incentives arising from agency problems within organiza-
tions that lead managers to overlook cyber hygiene. 

Information sharing and dissemination of best practices must remain 
a priority, particularly for small businesses that are more likely to lack the 
resources or infrastructure to search out and implement best practices. In 
particular, information needs to be publicly available, transparent, and shared 
to disseminate best practices and call attention to dangerous practices. For 
example, Gal-Or and Ghose (2005) show that industry-based information 
sharing and analysis centers can lead to improvements in social welfare, but 
the degree of competition in the marketplace is an important moderating 
factor that determines whether a firm participates. In particular, unless firms 
in an industry understand the downside associated with their vulnerability to 
cyberattacks, they may not realize the gains that can come from collaboration 
through information sharing. 

Many security operations companies also provide a source of market dis-
cipline by promoting transparency and information vis-à-vis cyber vulnerabili-
ties (such organizations that raise firms’ awareness of cybersecurity flaws are 
often referred to as “white hat hackers”). Conversely, a survey by Malwarebytes 
(2018) suggests that roughly 1 in 10 U.S. security professionals admit to con-
sidering participating in “black hat hacker” activity, which involves exploiting 
discovered cybersecurity vulnerabilities for financial gain. Roughly 50 percent 
of security professionals say they have known or know someone involved in 
black hat hacking activities. 
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Potential Vulnerabilities by Industry 
The prevalence of cyber threats suggests that firms are relatively unprepared to 
protect themselves. Indeed, according to Hiscox (2018a), in 2017 nearly three-
quarters of organizations based in the United Kingdom, the United States, 
Germany, Spain, and the Netherlands failed basic cyber readiness tests. Even 
though the United States ranks higher than most countries in cyber readiness 
(Makridis and Smeets 2018), its preparedness is still poor enough to concern 
policymakers studying the impact of cyber insecurity on the U.S. economy. 

To better understand these cybersecurity risks at a more granular level, 
Rapid7, an Internet security firm whose business model involves collecting 
publicly observable data on cybersecurity practices of any firm with an Internet 
presence, shared its 2018 data for Fortune 500 companies with the CEA. Using 
public data and a proprietary methodology, Rapid7 matches uniquely identi-
fied Internet protocol addresses of Internet-connected devices to a specific 
firm. Though the security scan is voluntary, only 4 percent of Fortune 500 
firms opt out. These data show that the majority of Fortune 500 companies are 
vulnerable to cyberattacks, and thus fail to take even the most basic security 
measures. And though there are many metrics for gauging vulnerabilities, we 
focus here on an important and transparent metric: whether email has been 
configured for protection against spam.

Motivated by the frequency of phishing email attacks, which are the 
most common method used by malicious cyber actors to penetrate network 
security, configuring a secure email network is one of the first lines of defense. 
One metric for email security is whether the organization has adopted the 
Domain-Based Message Authentication, Reporting & Conformance (DMARC) 
protocol. Although it is not a panacea for all types of phishing attacks, DMARC 
allows senders and receivers to authenticate whether a message is legitimately 
from a sender. Adopting DMARC for email makes it easier for organizations to 
not only identify spam and phishing messages, but also to keep them out of 
employees’ inboxes, thereby reducing the probability that an employee acci-
dentally clicks on a link. Moreover, properly configured DMARC records are able 
to actively quarantine or reject emails that are a threat to safety by allowing 
the message’s sender to signal to the recipient that the message is protected 
by a Sender Policy Framework and/or as DomainKeys Identified Mail. We note, 
however, that DMARC is only one metric out of many and that having it does 
not guarantee cyber safety.

Figure 7-5 reports the percentage of all Fortune 500 firms without a 
DMARC email configuration, together with value added, across industrial sec-
tors. This figure illustrates significant exposure across industries, ranging from 
40 percent of firms in business services to 93 percent of those in chemicals that 
are not implementing DMARC protocol. Moreover, although we do not interpret 
the relationship between value added and a lack of DMARC as causal, the data 
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suggest that a 10-percentage-point increase in share of firms without DMARC 
in a sector is associated with $345 billion less in value added in that sector 
(in 2017 dollars). This suggests that greater adoption of DMARC could avoid 
breaches and phishing scams.

Given that the combined market value of the Fortune 500 firms is over 
$21 trillion, these results suggest that much of this value may be exposed to 
cyber thefts of intellectual property, various destructive and ransomware 
attacks, and the destruction of reputational capital. Moreover, as outlined in 
the 2018 Economic Report of the President, an attack on entities—especially 
large, publicly traded Fortune 500 firms that are part of the Nation’s critical 
infrastructure—could have effects throughout the U.S. economy, affecting 
other firms in the supply chain and individual customers. Given the limited 
preparedness among Fortune 500 companies—manifested by not only the fail-
ure to adopt DMARC, but also a range of other cyber vulnerabilities detailed by 
Rapid7 (2018)—an additional concern is that smaller firms may have even less 
robust cybersecurity measures in place (Hiscox 2018b). 

The Federal government continues to modernize its cyber practices. OMB 
and DHS worked together to transform the Trusted Internet Connection (TIC) 
policies and processes so that Federal departments and agencies can take 
advantage of common and advanced cloud computing capabilities to meet 
their requirements. AI is not specifically identified in the policy updates, but 
departments and agencies are now able to use outside expertise in the cloud, 
which can include using AI and other methods, while continuously meeting 
appropriate cybersecurity and privacy controls. In alignment with the action 
steps identified in the Report to the President on Federal IT Modernization 
(American Technology Council 2017), those cooperating in the interagency 
effort continue to identify if there are any real or perceived policy limitations, 
by working through cases of real-world use that support their current and 
future needs. This continuous approach is instrumental for realizing the value 
of AI and other methods that best meet national needs.

The Federal government is more prepared than the private sector to 
protect against phishing attacks, which are a primary method for hackers to 
gain access to enterprises, due to the 2017 Binding Operational Directive 18-01, 
which introduced requirements for agencies to enhance email and web secu-
rity. Using data from the 2018 Federal “Cyber Exposure Scorecard,” figure 7-6 
plots the number of government agencies with various email configurations. In 
the figure, “fully rejects” means that an organization has properly configured 
its email, whereas “no rejections” means that it is vulnerable to an attack. 
Government agencies’ use of the DMARC email configuration is 47.9 percent, 
which is better than the average of 26 percent in the private sector. Moreover, 
of the 1,018 Federal second-level “dot-gov” domains, 86 percent have a valid 
DMARC record with a policy of “reject.” Though adoption of DMARC is only one 
of many indicators of cyber hygiene, and was linked to the implementation 
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of Binding Operational Directive 18-01 across Federal agencies, these results 
nonetheless suggest that Federal cyber best practices could set an example for 
the private sector.16

The Role of Policy
This section discusses the longer-run policy implications of both AI advance-
ment and cybersecurity issues, and details the Trump Administration’s current 
policies in these areas. The discussion highlights the Administration’s priorities 
for AI readiness and implementation, reskilling, and cybersecurity initiatives to 
contend with the changing nature of work and emerging technological threats.

Policy Considerations as AI Advances: Preparing for a 
Reskilling Challenge
As discussed in earlier in this chapter, economists agree that technological 
change resulting from AI will affect the structure of the demand for labor in 
the years to come (Brynjolfsson and McAfee 2014; Agrawal, Gans, and Goldfarb 
2018). One potential challenge that policymakers could face as AI advances 
is an increase in the number of workers who need new skills to find work in 
a changed labor market. Reskilling efforts, both for workers whose jobs have 
been displaced by technology and for those who need new skills to operate 
new technologies, could become more urgent as the demand for labor enters 
a new phase of its decades-long evolution. For example, the World Economic 
Forum (2018) found in a sample of firms that at least 54 percent of all employ-
ees will require significant reskilling and/or upskilling by 2022.

In 2016, the Obama Administration’s Council of Economic Advisers exam-
ined the economics of AI, including its possible effects on jobs in the future, 
predicting that “2.2 to 3.1 million existing part- and full-time U.S. jobs may be 
threatened or substantially altered,” by AI. In addition, it predicted roughly 
364,000 self-employed “drivers” (ride-sharing workers) would be at risk from 
a shift toward use of autonomous vehicles as of May 2015 estimates (CEA 
2016, 15). However, they also concluded that other workers could see a rise 
in productivity and increasing demand for certain skills. They identified four 
areas that could see a rise in labor demand: (1) engaging with AI to complete 
tasks, (2) developing new AI tools, (3) supervising and maintaining AI tools to 
ensure they are achieving the desired aims, and (4) responding to paradigm 
shifts where entirely new approaches are needed (CEA 2016). Because the 
jobs most vulnerable to automation are concentrated among lower-paid, less-
educated workers, reskilling programs could play an important role in helping 
avert further wage polarization and reallocating skills to where they are most 

16 Although it is also possible that the Federal government does not perform as well in other 
dimensions, the data from Rapid7 (2018) suggest that the sample of Fortune 500 companies also 
are exposed in other important dimensions of basic cybersecurity practices.
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needed. The CEA (2016) made three primary recommendations: (1) investing 
and developing AI for its many benefits in both the public and private sectors, 
(2) educating and training workers so they are prepared for the jobs of the 
future, and (3) helping workers transition across jobs to ensure shared gains 
from technological change. 

More recently, in discussing how automation may interact with the 
economy and workforce, the CEA (2018a) has referred to an observation made 
in a report by the National Academies (2017, 140), that continued advance of 
information technology implies “workers will require skills that increasingly 
emphasize creativity, adaptability, and interpersonal skills over routine infor-
mation processing and manual tasks.” This report also reiterates findings by 
the Organization for Economic Cooperation and Development (OECD 2018), 
among others, that workers who have not obtained a college degree are most 
at risk for displacement by automation. Similarly, motivated by the declining 
college and cognitive skills premium—as documented by Beaudry, Green, and 
Sand (2016); Valletta (2016); and Gallipoli and Makridis (2018)—individuals in 
occupations that involve greater IT-based tasks have continued experiencing 
rising wage premiums. All these pieces of empirical evidence point to the need 
for digital skills in the emerging labor market.

Policymakers may also address the concern that job losses from auto-
mation could disproportionately affect those who are least able to afford the 
tuition costs of reskilling programs up front, and those who are least likely to 
be able to sustain a forfeiture of labor income for the duration of the reskilling 
period. Gallipoli and Makridis (2018) find that individuals in jobs that tend to 
require more routine and manual skills are especially exposed to the growing 
demand for IT-based tasks. Another factor to consider in future policymaking 
is the unpredictable nature of disruption on the workforce. In determining 
federally funded programs to address displaced workers, the CEA (2018a, 21) 
cautions against programs targeting specific industries, instead suggesting 
that “keeping programs as flexible as possible reduces the need for continual 
re-optimization and increases the return on Federal dollars spent.” 

In addition to studying reskilling challenges, the Trump Administration 
has also established the President’s National Council of the American Worker 
to develop and implement a strategy aimed at expanding educational attain-
ment, training, and nontraditional degree programs that will prepare workers 
for the emergence of automation and AI (White House 2018a). Chapter 3 of this 
Report discusses the reskilling challenge in detail, including the job openings 
rates by industry. 

The opportunity for reskilling is perhaps greatest in the field of cyber-
security, where there is a shortage of skilled workers (Burning Glass 2018). 
Figure 7-7, for example, uses 2018 data from CyberSeek (2018)—a partnership 
between Burning Glass Technologies, the Computing Technology Industry 
Association, and the National Initiative for Cybersecurity Education—to 
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characterize the ratio of supply and demand for cybersecurity workers across 
locations (e.g., States). Although no State has a ratio less than 1, the vast cross-
sectional heterogeneity highlights how different State labor markets face very 
different intensities of shortage (e.g., the District of Columbia has a value of 
1.4, vs. Kentucky, which has a value of 3.2). To put these numbers in perspec-
tive, a value of 2 means that half of a State’s existing cybersecurity workforce 
would need to change jobs every year to meet new postings, underscoring the 
amount of turnover that would be required to meet the skills gap.

The Administration’s Policies to Promote Cybersecurity
It is essential that the Federal government and the private sector promote 
cyber best practices and cyber hygiene. For example, as discussed above, 
many Federal agencies have properly configured their email systems with 
DMARC. DHS’s National Cybersecurity Assessments and Technical Services 
team determined that 71 of the 96 Federal agencies surveyed have cyberse-
curity programs that are either at risk or at high risk, for at least four reasons, 
according to OMB (2018a); in the next paragraph, we summarize these factors 
from the “Federal Cybersecurity Risk Determination Report and Action Plan” 
(White House 2018a). 

Government agencies, along with the private sector, are not always 
aware of the situational context and/or the resources that exist to tackle the 
current threat environment. For example, 38 percent of the Federal cyber 

– – – – –
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incidents that were reported in 2018 did not specifically identify an attack 
vector. Organizations continue to adopt best practices, but there can be chal-
lenges with implementation. For example, only 49 percent of agencies have 
the ability to detect white-list software running on their systems.17 Moreover, 
the lack of network visibility means that agencies may be unable to detect 
data exfiltration. For example, only 27 percent of agencies report that they 
have the ability to detect and investigate attempts to access large volumes 
of data. Finally, the lack of organizational and managerial policies surround-
ing the ownership of cybersecurity risk results in chief information officers or 
chief information security officers who lack the authority to make the relevant 
organization-wide decisions, but are nonetheless charged with the responsibil-
ity of maintaining network security. For example, only 16 percent of agencies 
achieved the government-wide target for encrypting inactive data. 

These challenges are only going to grow, given the proliferation of data 
and increasing use of machine learning. Countries and malicious actors may 
turn toward counter-AI operations that attempt to alter and/or manipulate 
data (Weinbaum and Shanahan 2018). Individuals throughout the Federal 
civilian government, Department of Defense, intelligence community, and 
private sector will need to evolve to meet the expectations with identifying, 
protecting, detecting, responding, and recovering from threats in a timely 
manner. The Trump Administration—particularly through OMB, in partnership 
with the Department of Homeland Security, NIST, and the General Services 
Administration—is working to actively address these shortcomings. For exam-
ple, the update to the TIC initiative is only one component of a broader effort 
by the Federal Chief Information Security Officer Council to obtain and test use-
cases, particularly from the private sector (OMB 2018c). Moreover, as discussed 
in box 7-1, DARPA is developing new AI capabilities that help national security 
personnel more rapidly and reliably identify and address cybersecurity threats.

The Administration’s Policies to Maintain American 
Leadership in Artificial Intelligence
The Trump Administration’s AI agenda prioritizes advancing U.S. leadership 
in AI as well as helping the Nation’s workforce adapt to the changes that are 
coming. As evidenced in the Administration’s 2017 and 2018 budget priorities 
memoranda and highlighted at the White House AI summit in May 2018, the 
Administration continues to prioritize research-and-development funding for 
AI research and computing infrastructure, machine learning, and autonomous 
systems (OSTP 2018). To complement these active financial investments, the 
Administration also chartered the Select Committee on Artificial Intelligence 
under the National Science and Technology Council. This committee advises 
the White House on interagency research-and-development priorities, to foster 

17 An application white list refers to a set of applications that are authorized to be present 
according to a well-defined benchmark (Sedgewick, Souppaya, and Scarfone 2015). 
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collaboration between the private sector and academia, to identify opportuni-
ties to leverage Federal data and computational resources, and to improve 
the efficiency of government planning and coordination. The recent Executive 
Order on “Maintaining American Leadership in Artificial Intelligence” has 
formalized these commitments by calling for increased prioritization of invest-
ments, engaging in development of standards, and training and workforce 
development initiatives (White House 2019).

Second, the Administration has implemented policies that are condu-
cive to more rapid economic growth and innovation by removing regulatory 
barriers, including those on the deployment of AI-powered technologies. In 
September 2017, the Department of Transportation released an update of the 
2016 Federal Automated Vehicles Policy, providing nonregulatory guidance 
for AV developers, which was later further updated in October 2018 to provide 
a framework and multimodal approach to the safe integration of AVs into the 
surface transportation system. Similarly, the Administration is developing 
new rules in compliance with the Space Policy Directive–2 to streamline the 
licensing process for commercial space enterprises (White House 2018d). The 
Administration is also taking steps internationally to ensure that there is a level 
playing field for AI technologies. For example, at the World Trade Organization, 
and in trade agreements like the United States–Mexico–Canada Agreement, 
the Administration is protecting U.S. intellectual property and limiting the 
ability of foreign governments to require disclosure of proprietary computer 
source code and algorithms. These actions will better protect the competitive-
ness of our digital suppliers, and promoting access to government-generated 
public data, to enhance innovative use in commercial applications and services 
(USTR 2018). 

Third, the Administration has begun integrating advances in AI and 
related technologies to improve the delivery of government services to the 
American people. The President’s Management Agenda calls for the use of 
automation software to improve the efficiency of government services and 
maximize the applications of Federal data to help evaluate and modify Federal 
programs (OMB 2018b). In addition, in April 2017, the Department of Energy 
(DOE) and the Department of Veterans Affairs launched the Million Veteran 
Program Computational Health Analytics for Medical Precision to Improve 
Outcomes Now—known as CHAMPION—which uses high-performance com-
puting infrastructure in the DOE National Laboratories to analyze large quanti-
ties of data and make recommendations that focus on suicide prevention and 
enhanced predictions and diagnoses of diseases (DOE 2017).

Recognizing that AI holds promise not only for greater economic opportu-
nity but also for national security aims, the Trump Administration has directed 
considerable resources and leadership into targeted strategic investments, 
particularly at the nexus of AI and cybersecurity. One example, as discussed 
in box 7-1, is the Defense Advanced Research Projects Agency (DARPA 2018c), 
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which is actively investing in a “third wave” of AI technologies to make AI more 
transparent and accessible for deployment across both the public and private 
sectors. In particular, these initiatives focus on identifying ways for humans 
to use AI as tools for more effectively completing their tasks and maintaining 
network security. 

To complement these broad-based research-and-development funding 
priorities, the Administration signed a memorandum directing, “Secretary of 
Education DeVos to place high quality STEM [science, technology, engineer-
ing, and mathematics] education, particularly Computer Science, at the 
forefront of the Department of Education’s priorities” (White House 2017b). 
The Department of Education is working to devote over $200 million a year in 
grant funds toward these STEM and computer science activities, in addition 
to exploring other administrative actions that will advance computer sci-
ence in K–12 and postsecondary institutions. Moreover, box 7-3 describes the 
emerging National Cyber Education Program, which is a prime example of an 
initiative focused on increasing the supply of STEM talent, specifically for the 
cybersecurity field.

The Administration’s Implementation of the National Cyber 
Strategy 
In addition to the National Security Strategy (White House 2017a), the 
Administration has also developed the comprehensive 2018 National Cyber 
Strategy, the first of its kind in over 15 years, to address the cybersecurity chal-
lenges of the coming decades (White House 2018b). This strategy’s fourfold 
overarching goals mirror the pillars of the 2017 National Security Strategy; 
we paraphrase and synthesize these four objectives here, together with their 
priority areas.

The first objective is protecting the American people, the Homeland, and 
the American way of life. To do this, the Administration is securing Federal 
networks and information, securing critical infrastructure, and combating 
cybercrime and improving incident reporting. Three priorities associated with 
this objective involve improving risk management and incident reporting prac-
tices, modernizing Federal technology and security systems, and streamlining 
processes and roles and responsibilities.

The second objective is promoting American prosperity. To accomplish 
this, the Administration is fostering a vibrant and resilient digital economy, 
encouraging and protecting U.S. ingenuity, and developing a superior cyberse-
curity workforce. The priorities associated with this objective include promot-
ing an agile and next-generation digital infrastructure, protecting intellectual 
property, and creating a pipeline and incentive structure that cultivate highly 
skilled cybersecurity and technology workers.

The third objective is to preserve peace through strength. To do this, 
the Administration is enhancing cyber stability through norms of responsible 
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Box 7-3. Educating the Cyber Workforce of Tomorrow
One of the most commonly cited workforce challenges within both the 
public and private sectors is the shortage of skilled workers. According to 
recent estimates from International Information System Security Certification 
Consortium—known as ISC²—there is a shortage of 2.9 million cybersecurity 
employees globally (ISC2 2018). Moreover, numerous survey results suggest 
that organizations are increasingly more likely to report a shortage of cyber-
security skills (Oltsik 2018; Burning Glass 2018).

Although there is debate about the its magnitude, there is a general 
recognition that more workers are needed to fill the increasing demand for 
cybersecurity skills, particularly as the paths by which hackers can gain access 
to computers and network servers expand in the growing digital economy. 
A national program that could help cultivate a new generation of cyber 
professionals prepared to meet the needs of the government, the defense 
community, and the private sector constitutes an Administration priority for 
both national security and the economy. 

One example of a long-run and scalable solution is the National Cyber 
Education Program, which is a joint public–private initiative supported by 
the Trump Administration that seeks to inspire and educate children in 
elementary through high school about potential career paths and tools for 
careers in cybersecurity. This program is a multipart, public–private educa-
tion initiative within the NIST Framework and with themes from the National 
Integrated Cyber Education Research Center at its core and strong support 
and leadership from a large educational services firm that serves 30 million 
K–12 students and 3 million teachers through its online education platform. 
This initiative includes these features:

1.	 Core curricular cyber content for grades K–12.
2.	 Virtual professional development for improving skills among STEM 

and cybersecurity educators to deliver content effectively and 
across disciplines.

3.	 Transformative learning tools and curricula for students to promote 
both technical content and real-world applications.

4.	 A career portal for connecting students with cybersecurity oppor-
tunities in government and the private sector, as well as regional 
conferences that provide access to counselors, educators, and 
industry professionals.

5.	 Tools for cybersecurity industry partners to engage their local com-
munities, particularly schools, through volunteerism and mentor-
ship.

The National Cyber Education Program has an estimated total budget 
of $20 to $25 million, which will be provided by a combination of committed 
private sponsors.
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behavior and attributing and deterring unacceptable behavior in cyberspace. 
A priority related to this objective is countering malign cyber influence with 
information operations and better intelligence.

The fourth objective is to advance American influence. To accomplish 
this, the Administration is promoting an open, interoperable, reliable, and 
secure Internet and building international cyber capacity. Two priorities 
related to this objective include developing partnerships across the public 
and private sectors to promote innovation and cutting-edge technologies and 
promoting free and secure markets worldwide. As discussed in box 7-3, the 
National Cyber Education Program is an example of a public–private initiative 
that empowers teachers with the resources to improve learning outcomes and 
career pathways for students, particular for the emerging cyber workforce.

The Trump Administration is advancing these four objectives through 
a combination of short- and long-run efforts. In the long run, U.S. policymak-
ers seek to prioritize an active and prepared pipeline of technology workers 
with mastery of information security practices. In the short run, the United 
States will continue strengthening network security, especially in critical 
infrastructure sectors. OMB issued a memorandum in May 2018 detailing the 
risk assessment process, which builds upon the Federal Information Security 
Modernization Act of 2014 Chief Information Officer metrics from 2017 and the 
Inspectors General metrics from 2016 (OMB 2018a). These metrics are based 
on the NIST Framework for Improving Critical Infrastructure Cybersecurity 
(NIST 2014), which provides best practices to which both public and private 
organizations can adhere, and aims to create predictability and encourage 
the adoption of best practices throughout government. Although no system 
in today’s geopolitical environment is completely secure, these actions are 
setting the groundwork for a safe and secure digital infrastructure; see box 7-4 
for a discussion of how Estonia became one of the world’s leading countries in 
digital infrastructure.

Further Artificial Intelligence and Future of Work Policy 
Considerations
Motivated by the increasingly rapid pace of technological change and its 
implications for individuals, there are several lines of inquiry about the role of 
government.18 First, some have suggested, as part of the social safety net, the 

18 We do not, however, discuss in depth the concerns about AI reaching a point of singularity, 
or general intelligence, whereby algorithms can create new ideas on their own without human 
assistance. Though the concept of singularity and the prospect of accelerated knowledge creation 
could lead to a large gain in productivity (Nordhaus 2015), an alternative scenario is one where 
algorithms would begin to dictate decisionmaking over human judgment. These discussions are 
beyond the scope of this chapter and the bulk of ongoing policy deliberations.
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Box 7-4. Estonia: A Case Study of Modern Cybersecurity Practices
Although residents of Estonia rarely had access to electronic devices or the 
Internet a few decades ago, it has become an economic success story and 
digital leader in its region. Between 1995 and 2017, its real GDP grew by 141.5 
percent (vs. 69.8 percent in the United States). According to the Estonian 
government, 99 percent of public services were available online as of 2017. 
Estonia does not use a centralized or master database, but rather X-Road—a 
software platform that allows links among its public and private e-service 
databases. According to the Estonian government, X-Road saves over 800 
years of working time every year, reducing bureaucracy and raising efficiency 
(Vainsalu 2017). 

Though Estonia “was, effectively, a disconnected society” in the early 
2000s, moving toward a digital economy through the introduction of its 
X-road infrastructure has allowed the country to raise productivity and 
become more secure (Vassil 2015). Consider, for instance, queries involving 
vehicle registration data. Typically, this search would require three police 
officers working for about 20 minutes; but the X-Road software platform eases 
the retrieval of information, so a single officer can complete the search within 
a few seconds (Vassil 2015). All of Estonia’s government services, ranging from 
collecting taxes to health records for personalized medical services, are made 
secure and readily accessible with the proper authentication credentials. 
These technological strides are arguably a major factor behind Estonia’s 
emergence as one of the top countries for doing business, ranking as the most 
competitive tax system in the OECD, according to the Tax Foundation (2014), 
and as the seventh-most-free economy in the world, according to the Heritage 
Foundation (2018).

Interestingly, the number of queries through X-Road has grown expo-
nentially, which is remarkable because similar digital services, such as data 
repositories and services, tend to grow linearly (Vassil 2015). An integral part 
of Estonia’s success through X-Road has been its data security and privacy 
features. For example, citizens may use digital signatures, secured with a 
2,048-bit encryption, to perform daily tasks such as banking and notarizing 
documents. Public safety has improved because the presence of digital 
identification cards has shortened response times to 10 seconds or less for 93 
percent of emergency calls (Estonia 2018). In fact, as of 2018, the only legal 
transactions that one could not make online were marriage, divorces, and real 
estate. The core of these online activities is a 2000 digital signature law that 
created a framework for digital contracting.

Of course, the transition to a digital economy has come with increased 
targeting from other state and nonstate actors. Healthcare, energy, and the 
public sector face continuous cyberattacks, primarily from malware infec-
tions or outdated software. Perhaps Estonia’s largest attack was in 2007; 
it involved distributed denial-of-service attacks that disabled computer 
networks, halting communication between the country’s two largest banks 
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provision of a universal basic income, which would help individuals potentially 
suffering from job displacement. Proponents argue, for example, that the 
scale of technological change is unlike anything developed countries have 
experienced in the past and, therefore, social safety nets must evolve to adapt 
to the new risks. However, a universal basic income would not only discourage 
work, especially in light of the existing social safety net (e.g., unemployment 
insurance and food stamps), but would also undermine the intrinsic value that 
work plays in creating meaning and purpose in peoples’ lives (Opportunity 
America 2018).

Second, given the wide array of applications of AI for national security 
and warfare, there is an ongoing debate about whether AI should be regulated 
to prevent an “AI arms race” among countries (Taddeo 2018; Horowitz 2018). 
Particularly because AI is a general purpose technology (Agrawal, Gans, and 
Goldfarb 2018), the dual uses of AI developments mean that they will diffuse 
rapidly upon entering the private sector. One primary fear, for example, is that 
AI algorithms could make decisions about troop and/or drone deployments, 
which would put human lives at risk without the traditional human decision-
making process. Much like the concerns about autonomous vehicles and 
passenger safety, some policymakers and researchers are calling for greater 
guidance on regulating AI when lives are at stake.

Third, although machine learning algorithms have been remarkably 
successful at predicting individual outcomes using increasingly accessible 
and granular data, many researchers and policymakers have voiced concern 
about the potential for these algorithms to propagate bias and discrimination 
(Kleinberg, Mullainathan, and Raghavan 2018). If the data on which algorithms 
are trained exhibit certain biases, then AI could propagate these biases on a 
wider and more subtle scale. Though these concerns are valid, the implications 

and causing reverberations for political parties. After the attack, Estonia 
established the NATO Cooperative Cyber Defense Center of Excellence in its 
capital, Tallin, in addition to founding the Cyber Defense League, which works 
to counter cyberattacks (Czosseck, Ottis, and Talihärm 2011). These increased 
security precautions and this institutional infrastructure have helped thwart 
attacks, including a large attempted attack on the country’s digital identifica-
tion cards, raising public confidence. The system is highly secure because 
access to databases via X-Road is gated via a secure identification card using 
two-factor authentication and end-to-end encryption (Estonia 2018).

Estonia has continued to prioritize improving its digital economy, in 
addition to developing a broader global network in partnership with other 
countries; see, for example, Estonia’s “Digital Agenda 2020,” which details 
plans to improve the well-being of its people and public administration 
through digitization (Estonia 2018). 
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for regulation are ambiguous. In particular, Kleinberg, Mullainathan, and 
Raghavan (2018) outline three conditions that are required for algorithmic fair-
ness at the heart of these debates about algorithmic classification—showing 
that, except in special cases, no method can satisfy all three conditions simul-
taneously. In this sense, though concerns about algorithmic fairness ought 
to continue being voiced, policymakers should approach with caution when 
formulating policy to avoid simply reacting to the latest fad or worry.

Fourth, some are concerned that the emergence of big data and AI will 
pose a threat to competition because larger companies will be better equipped 
to train models on larger data (Seamans 2017; Bessen 2018). For example, 
companies with access to more data might be able to reduce business uncer-
tainty by incorporating more information into their forecasts, thereby obtain-
ing lower costs of capital (Begenau, Farboodi, and Veldkamp 2018). However, 
a countervailing force is the impact of AI on the cost of entry and creative 
destruction. For instance, the discovery and application of cloud computing 
allow firms to rent computer power and/or data storage. Aside from the 25 to 
50 percent direct cost savings observed in government (West 2010), the indirect 
effects on entry costs and competition, particularly in concentrated markets, 
may be larger (Colciago and Etro 2013). Nonetheless, regulation and competi-
tion policy around big data and AI will remain an active ongoing debate.

Despite these general categories of concerns, caution is especially 
important when considering prospective regulation. For example, according 
to Stanford University’s One Hundred Year Study of Artificial Intelligence, “The 
Study Panel’s consensus is that attempts to regulate ‘AI’ in general would be 
misguided, because there is no clear definition of AI (it isn’t any one thing), and 
the risks and considerations are very different in different domains” (Stanford 
University 2016). Moreover, because AI is an inherently global technology, regu-
lation in one country could put companies that are competing in an interna-
tional marketplace due to cross-country linkages at a significant disadvantage.

Conclusion
Recent advances in computer science and artificial intelligence technology 
are revolutionizing the U.S. economy. In many fields, tasks that traditionally 
required humans can now easily be performed by AI algorithms. Although 
these discoveries have the potential to “be as important and transformational 
to society and the economy as the steam engine,” according to Brynjolfsson 
and McAfee (2014, 9), they are also creating known and unknown dependen-
cies and challenges, such as accelerated polarization in the labor market and 
increased exposure to cybersecurity threats.

This chapter has defined and reviewed recent developments in AI 
and automation. Unlike traditional forms of information technology (e.g., 
computers) that require humans to provide instructions and programmatic 



Adapting to Technological Change  | 379

commands, intelligent systems are defined by their applicability to a wide 
range of tasks that need little supervision. For example, Google’s new AI 
algorithm, AlphaZero, successfully trained itself how to play and subsequently 
defeat the world’s best chess engine, Stockfish. Similarly, DARPA has also 
created tools capable of reliably and rapidly identifying cybersecurity vulner-
abilities. Apart from these gaming and national security applications, AI is also 
frequently applied in the private sector—through, for example, data-driven 
decisionmaking business analytics and precision agriculture.

Drawing on historical examples, we have demonstrated the potential 
effects of AI technology on the U.S. labor market. Although advances in AI, 
and the introduction of technology more broadly, will inevitably change the 
composition of tasks and jobs by making some tasks typically performed by 
humans obsolete, we have shown in the text above that humans will continue 
to have an important economic function because of their comparative advan-
tage over AI in other tasks, even if they do not hold an absolute advantage. This 
means that companies and entrepreneurs will find it more profitable to design 
technology capital that complements human capabilities. However, to allevi-
ate the potentially adverse effects of AI on individuals and jobs that are more 
exposed to disruption, the Trump Administration has responded proactively by 
supporting and funding reskilling and apprenticeship initiatives in areas where 
humans retain a comparative advantage. For example, the Pledge to America’s 
Workers, an initiative from the National Council for the American Worker, 
already has over 6.5 million pledges toward reskilling workers.

In addition, we have applied economic theory to analyze the wage pat-
terns among industries that are adopting AI technology. In the initial anticipa-
tion phase, firms know that they will be more productive, but, because they 
currently lack the AI capital, raise real wages. However, in the arrival phase, 
which is typically the primary focus among the popular press, the introduction 
of AI substitutes for labor as workers compete with machines, thereby depress-
ing real wages. But as business formation catches up with the new technology, 
real wages ultimately rise to levels above what they were before AI. 

We have also explored ongoing cybersecurity vulnerabilities, along with 
future threats, as dependence on technology increases. The CEA (2018b) esti-
mated the cost of attacks on these vulnerabilities to be $109 billion in 2016. 
Drawing on new data from Rapid7 across industries, we find that cybersecurity 
vulnerabilities are more pronounced than previously thought, even among 
well-established Fortune 500 firms. The prevalence of these vulnerabilities, 
coupled with the underreporting of public cybersecurity breaches, suggests 
that traditional measures of the cost of malicious cyberattacks may be greater 
than previously anticipated. We have discussed potential causes behind the 
failure to adopt cybersecurity best practices in the private sector, along with 
the policy implications, including tools already being used by the Federal gov-
ernment to prevent malicious cyberattacks and phishing attempts.  
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We conclude by highlighting the Trump Administration’s current policy 
initiatives to tackle the risks posed by continued technological change in 
the labor market and new cybersecurity threats. The 2018 National Council 
for the American Worker, for example, has introduced initiatives to promote 
reskilling and apprenticeships to help workers transition into new and emerg-
ing jobs. For example, the Pledge to America’s Workers already has over 6.5 
million commitments to these aims by companies. In a similar vein, the 2018 
National Cyber Strategy lays out a comprehensive framework for engaging and 
dealing with cybersecurity threats. For example, the “Federal Cybersecurity 
Risk Determination Report and Action Plan” (White House 2018a) establishes 
a detailed risk assessment process based on best practices from the NIST 
Framework to create predictability and the adoption of best practices through-
out the Federal government. Moreover, by modernizing educational curricula 
and equipping teachers with new multimedia content and tools, the emerging 
National Cyber Education Partnership will help address the cybersecurity skills 
gap that currently threatens U.S. economic and national security.

The expansion of artificial intelligence and automation is already having 
profound effects on the U.S. economy and geopolitical landscape. Although we 
are only beginning to see their manifestations, and thus the full scale of poten-
tial threats and benefits cannot be entirely quantified, these changes pose both 
new challenges and opportunities. The Trump Administration is committed to 
policymaking that leverages technological change as an asset rather than a 
liability, to advancing economic gains for American workers, and to promot-
ing best practices for our digital infrastructure so that America can remain the 
most prosperous and competitive country during the emerging technological 
transformation.
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